REQUIREMENTS FOR CANDIDATES TO IB1 MATHEMATICS

The purpose of the entrance exam is to check to what extend the candidate has mastered the school material from primary school and $9^{\text {th }}$ and $10^{\text {th }}$ grades, as well as additional information about the candidates' mathematical and logical skills. The exam will include:

- knowledge and understanding: number skills, selecting and applying effectively mathematics to solve problems, checking results;
- investigating patterns, seeing connections and dependencies: applying reasoning, content analysis, giving arguments, noticing analogies, formulating applications, generalizing;
- communicating: using appropriate mathematical language to describe reasoning and obtained results, interpreting and creating mathematical data, representing data graphically, using different forms of representation when communicating mathematical ideas, reasoning and findings;
- applying mathematics in real-life context: selecting the best model to describe and solve the given problem, draw valid conclusions, reflect upon their results.

Detailed requirements:

1) Number and algebra:

- number systems: natural numbers, integers, rationals and irrationals, real numbers,
- operations on numbers,
- absolute value,
- prime numbers, factors, multiples GCD, LCF,
- working with percentages,
- powers and roots, laws of operations on powers and roots,
- ratios, rates, scale,
- rounding numbers (significant figures concept), approximation and estimation, errors
- conversion of units: time, speed, distance, length, mass,
- units of areas and volume,
- algebraic expressions, factorization and expansion,
- calculating the numerical value of the expression by substitution,
- exponential expressions, logarithms,
- working with algebraic fractions,
- rearranging formulae,
- rationalizing the denominator,
- scientific notation,
- number sequence: arithmetic and geometric,
- financial mathematics: simple/compound interests, depreciation, loans, world currencies, sequences in finance,
- linear and quadratic equations and inequalities, quadratic formula,
- systems of linear equations
- perfect squares formulas: square of a sum, square of a difference, difference of squares,
- sets, operations on sets: union, intersection, Venn diagrams.

2) Functions:

- relations and functions, domain and range, sign diagrams, transformations of graphs, absolute value function, composite functions, inverse functions,
- linear and quadratic functions,
- polynomials,
- exponentials and logarithmic functions.

3) Geometry and trigonometry:

- Pythagoras' theorem and its converse, triangles $45,45,90$ and 30 , 60, 90,
- right-angle trigonometry, solving triangles,
- non-right angle trigonometry, area of a triangle, sine and cosine rules,
- angle of elevation, angle of depression, true bearings,
- midpoint of a line segment, distance between two points in a Cartesian plane, gradient, parallel and perpendicular lines,
- equation of a line, perpendicular bisector, Voronoi diagram,
- translation, reflection, rotation, enlargement,
- simple geometric proofs, congruent and similar triangles,
- regular polygons, especially regular hexagon,
- properties and formulas for the perimeters and areas of flat figures: square, rectangle, rhombus, parallelogram, trapezoid,
- circle, circumference of a circle and area of a circle, the number π, length of an arc, area of a sector, area and perimeter of a segment,
- circle theorems: tangents from an external point theorem, angle between a tangent and a chord theorem, angle at the center theorem, angles subtended by the same arc theorem,
- cyclic quadrilaterals, regular polygons,
- cube, cuboid: volume, surface area, diagonals,
- prisms and pyramids, cylinders: volumes and surface areas in tasks of low difficulty,
- prisms and pyramids in a realistic context, e.g. packing books or frames in a box.

4) Statistics and probability:

- interpretation and creation of tables, bar and pie charts, charts in the coordinate system,
- simple statistics from discrete data: mean, mode, median, range, quartiles, interquartile range,
- calculating the probability of simple events,
- Venn and tree diagrams,
- independent events,
- conditional probability,
- expectation
- bivariate statistics: scatter graphs, correlation, line of best fit by eye, linear regression.

